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Problem 1
Basu’s elephant example was described in class. In this example the circus statistician uses probability
sampling to obtain an estimate of the total weight. Assume that the sample size is 1, and use the statistician
estimator composed of the weight of the sampled elephant, multiplied by the inverse probability of an elephant
to be sampled. Calculate the variance of this estimator (This estimator and its variance are also known as
the Horvitz-Thompson estimators, and as we saw in class can produce some illogical results.)

Solution

Horvitz-Thompson Estimator:

Let Y be some property of which we want to estimate the total, τ , for some population (N) with a sample of
size n. Then, the Horvitz-Thompson estimator for τ is:

τ̂ =
n∑
i=1

yi
πi

where πi is the probability that yi is included in the sample. With a sample size of 1 with a 99% of being
chosen, as in Basu’s elephant example, the variance of the estimator is very large. We show this via simulation.
#arbitrary weights for elephants
weights_sorted = sort(rnorm(101, mean = 50, sd = 5))
probs = c(rep(1/10000, 50), .99, rep(1/10000, 50))

horv <- function(weights, probs){
#Horvitz_Thompson estimator with sample size = 1
sample = sample(weights_sorted, 1, prob = probs)
return(sample/probs[which(weights_sorted == sample)])

}

sims = replicate(1000000, horv(weights_sorted, probs))
var(sims)

## [1] 2523405243

Problem 2
Conditional probability: approximately 1/125 of all births are fraternal twins and 1/300 of births are identical
twins. Elvis Presley had a twin brother (who died at birth). What is the probability that Elvis was an
identical twin? (You may approximate the probability of a boy or girl birth as 1/2.)

Solution

Possible Twin Combinations:
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• Identical: MM, FF
• Fraternal: MM, FF, MF, FM

Events:
I = identical twins
F = fraternal twins
M = male brothers

Probability of Interest:

P (I|M) = P (M |I)P (I)
P (M |I)P (I) + P (M |F )P (F ) = (1/2)(1/300)

(1/2)(1/300) + (1/4)(1/125) = 5
11 ≈ 0.4545

Thus, the probability that Elvis was an identical twin is roughly 45.45%.

Problem 3
Simulation of a queuing problem: a clinic has three doctors. Patients come into the clinic at random, starting
at 9 a.m., according to a Poisson process with time parameter 10 minutes: that is, the time after opening at
which the first patient appears follows an exponential distribution with expectation 10 minutes and then,
after each patient arrives, the waiting time until the next patient is independently exponentially distributed,
also with expectation 10 minutes. When a patient arrives, he or she waits until a doctor is available. The
amount of time spent by each doctor with each patient is a random variable, uniformly distributed between
15 and 20 minutes. The office stops admitting new patients at 4 p.m. and closes when the last patient is
through with the doctor.

a) Simulate this process once. How many patients came to the office? How many had to wait for a doctor?
What was their average wait? When did the office close?

b) Simulate the process 100 times and estimate the median and 50% interval for each of the summaries in
(a).

Solution

#sim <- function(){
# duration <- 420 #minutes (7 hrs.)
# lambda <- 0.1 #arrival rate (number of patients per minute)
# arrivals <- rpois(duration, lambda)

# num_patients <- c(0) #all patients that have come in
# waiting_patients <- c(0) #patients actively waiting to be seen

# doc1 <- c(0)
# doc2 <- c(0)
# doc3 <- c(0)

#service_time <- floor(runif(1, min=15, max=21)) #number of mins spend with doc

# for (i in 1:length(arrivals)){
# if (arrivals[i]==1){
# num_patients <- c(num_patients, num_patients[i-1] + 1)
# }
# else {
# num_patients <- c(num_patients, num_patients[i-1])
# }
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# }

# for (i in 1:length(arrivals)){
# if (arrivals[i]>=1){
# waiting_patients[i] <- num_patients[i-1] + 1
# }
# else {
# waiting_patients[i] <- num_patients[i-1]
# }
# }

# for (i in 1:length(arrivals)){
# if (waiting_patients[i]>=1){
# doc1[i:floor(runif(1, min=15, max=21))] <- 1
# waiting_patients[i+1] <- waiting_patients[i] - 1
# }
# else{
# waiting_patients[i] <- num_patients[i-1]
# }
# }

#return(data.frame(arrivals, num_patients))
#}

#sim()

Problem 4
Predictive distributions: let y be the number of 6’s in 1000 independent rolls of a particular real die, which
may be unfair. Let θ be the probability that the die lands on 6. Suppose your prior distribution for θ is as
follows:

P (θ = 1/12) = 0.25

P (θ = 1/6) = 0.5

P (θ = 1/4) = 0.25

a) Using the normal approximation for the conditional distributions, p(y|θ), sketch your approximate prior
predictive distribution for y.

Solution

#Prior Predictive Distribution for Y

y <- seq(50,300,1)

p <- function (x, theta){
dnorm (x, 1000*theta, sqrt(1000*theta*(1-theta))) #using binomial mean and sd

}

py <- 0.25*p(y,1/12) + 0.5*p(y,1/6) + 0.25*p(y,1/4)

plot(y, py, type='l')
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b) Give approximate 5%, 25%, 50%, 75%, and 95% points for the distribution of y. (Be careful here:
y does not have a normal distribution, but you can still use the normal distribution as part of your
analysis.)

Solution

1) The 5% point of p(y) is the 20% point of the first hump (P (θ = 1/12) = 0.25): ≈ 76
2) The 25% point of p(y) is the 99.99% point (tail) of the first hump (P (θ = 1/12) = 0.25): ≈ 120
3) The 50% point of p(y) is the 50% point (peak/mean) of the second hump (P (θ = 1/6) = 0.5): ≈ 167
4) The 75% point of p(y) is is the 99.99% point (tail) of the second hump (P (θ = 1/6) = 0.5): ≈ 117
5) The 95% point of p(y) is the 80% point of the third hump (P (θ = 1/4) = 0.25): ≈ 262

#1
qnorm(0.2, 1000*(1/12), sqrt(1000*(1/12)*(1-(1/12))))

## [1] 75.9775
#2
qnorm(0.99999, 1000*(1/12), sqrt(1000*(1/12)*(1-(1/12))))

## [1] 120.6088
#3
qnorm(0.5, 1000*(1/6), sqrt(1000*(1/6)*(1-(1/6))))

## [1] 166.6667
#4
qnorm(0.99999, 1000*(1/6), sqrt(1000*(1/6)*(1-(1/6))))

## [1] 216.9289
#4
qnorm(0.8, 1000*(1/4), sqrt(1000*(1/4)*(1-(1/4))))

## [1] 261.5244
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Problem 5
Noninformative prior densities:

a) For the binomial likelihood, y ∼ Bin(n, θ), show that p(θ) ∝ θ−1(1−θ)−1 is the uniform prior distribution
for the natural parameter of the exponential family.

Solution

Transformation of Binomial Distribution to Natural Parameter in the Exponential Family:

Φ = h(θ) = logit(θ) = log

(
θ

1− θ

)
By Jefferey’s Invariance Principle:

p(Φ) = p(θ) · |h′(θ)|−1 ∝ [θ−1(1− θ)−1] ·
∣∣∣∣ 1
θ(1− θ)

∣∣∣∣−1
= 1
θ(1− θ) · θ(1− θ) = 1

Thus, since p(Φ) ∝ 1, it follows that p(θ) ∝ θ−1(1− θ)−1 is the uniform prior distribution for the natural
parameter of the exponential family.

b) Show that if y = 0 or n, the resulting posterior distribution is improper.

Solution

For a binomial distribution modeling the number of successes (y) in n trials, each with a probability θ of
success, it follows that y = nθ, and similarly, that θ = y/n. Thus, if y = 0, then θ = 0. Likewise, if y = n,
then θ = 1. Both such cases, give us undefined priors, resulting in a posterior that does not integrate to 1
and is hence, improper.

Problem 6
Normal distribution with unknown mean: a random sample of n students is drawn from a large population,
and their weights are measured. The average weight of the n sampled students is ȳ = 150 pounds. Assume
the weights in the population are normally distributed with unknown mean θ and known standard deviation
20 pounds. Suppose your prior distribution for θ is normal with mean 180 and standard deviation 40.

a) Give your posterior distribution for θ. (Your answer will be a function of n.)

Solution

Given that ȳ|θ, σ2 ∼ N(θ, σ2/n) and θ ∼ N(µ0, τ
2
0 ), it follows that θ|ȳ ∼ N(µn, τ2

n), where:

µn =
1
τ2

0
µ0 + n

σ2 ȳ

1
τ2

0
+ n

σ2

and τ2
n = 1

1
τ2

0
+ n

σ2

Thus, the posterior distribution for θ is normal with the given parameters:

θ|ȳ ∼ N
( 1

402 180 + n
202 150

1
402 + n

202

,
1

1
402 + n

202

)

*Note:

• 1
τ2
n

= 1
τ2

0
+ n

σ2 , so τ2
n = 1

1
τ2

0
+ n
σ2

b) A new student is sampled at random from the same population and has a weight of ỹ pounds.
Give a posterior predictive distribution for ỹ. (Your answer will still be a function of n.)
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Solution

Given the Adam and Eve laws and the results from part (a), it follows that the posterior predictive distribution
is ỹ|y ∼ N(µn, σ2

n + τ2
n). Specifically,

θ|ȳ ∼ N
( 1

402 180 + n
202 150

1
402 + n

202

, 202 + 1
1

402 + n
202

)
c) For n = 10, give a 95% posterior interval for θ and a 95% posterior predictive interval for ỹ.

Solution

#Computing 95% Posterior Interval for Theta, n=10

mu_10 <- (((1/(40ˆ2))*180)+((10/(20ˆ2))*150))/((1/(40ˆ2))+(10/(20ˆ2)))
tau2_10 <- 1/((1/(40ˆ2))+(10/(20ˆ2)))

theta_lower_10 <- mu_10-(1.96*sqrt(tau2_10))
theta_upper_10 <- mu_10+(1.96*sqrt(tau2_10))

c(theta_lower_10, theta_upper_10)

## [1] 138.4877 162.9757
#Computing 95% Posterior Predictive Interval for New Y, n=10

y_lower_10 <- mu_10-(1.96*sqrt(tau2_10+(20ˆ2)))
y_upper_10 <- mu_10+(1.96*sqrt(tau2_10+(20ˆ2)))

c(y_lower_10, y_upper_10)

## [1] 109.6640 191.7994

d) Do the same for n = 100.

Solution

#Computing 95% Posterior Interval for Theta, n=100

mu_100 <- (((1/(40ˆ2))*180)+((100/(20ˆ2))*150))/((1/(40ˆ2))+(100/(20ˆ2)))
tau2_100 <- 1/((1/(40ˆ2))+(100/(20ˆ2)))

theta_lower_100 <- mu_100-(1.96*sqrt(tau2_100))
theta_upper_100 <- mu_100+(1.96*sqrt(tau2_100))

c(theta_lower_100, theta_upper_100)

## [1] 146.1597 153.9899
#Computing 95% Posterior Predictive Interval for New Y, n=100

y_lower_100 <- mu_100-(1.96*sqrt(tau2_100+(20ˆ2)))
y_upper_100 <- mu_100+(1.96*sqrt(tau2_100+(20ˆ2)))

c(y_lower_100, y_upper_100)

## [1] 110.6798 189.4698
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Problem 7
Discrete sample spaces: suppose there are N cable cars in San Francisco, numbered sequentially from 1 to N .
You see a cable car at random; it is numbered 203. You wish to estimate N .

(a) Assume your prior distribution on N is geometric with mean 100; that is, p(N) = ( 1
100 )( 99

100 )N−1, for
N = 1, 2, ... What is your posterior distribution for N?

Solution

Prior Distribution:

p(N) =
(

1
100

)(
99
100

)N−1

Likelihood:

p(y|N) =
{

1
N if N ≥ 203
0 otherwise

Posterior Distribution:

p(N |y) ∝ p(N)p(y|N) =
(

1
100

)(
99
100

)N−1
· 1
N
∝ 1
N

(
99
100

)N−1

(b) What are the posterior mean and standard deviation of N? (Sum the infinite series analytically or
approximate them on the computer.)

Solution

Normalizing Constant:

p(N |y) ∝ 1
N

(
99
100

)N−1

p(N |y) = c · 1
N

(
99
100

)N−1

1
c

=
∞∑

N=203

1
N

(
99
100

)N−1

#Normalizing Constant

N <- 203

infsum <- function(N){
x = (1/N)*((99/100)ˆ(N-1))
return(x)

}

cumN <- c()

for (i in N:1000){
cumN <- c(cumN, infsum(i))

}

tail(cumsum(cumN), n=1) #1/c

## [1] 0.04704688

7



c <- 1/(tail(cumsum(cumN), n=1))

c

## [1] 21.25539

E(N |y) =
∞∑

N=203
Np(N |y) =

∞∑
N=203

N · 1
N

(
99
100

)N−1
· c =

∞∑
N=203

(
99
100

)N−1
· c

#Posterior Mean/Expectation

infsum2 <- function(N){
x = c*((99/100)ˆ(N-1))
return(x)

}

cumN2 <- c()

for (i in N:1000){
cumN2 <- c(cumN2, infsum2(i))

}

post_exp <- tail(cumsum(cumN2), n=1)

post_exp

## [1] 279.0202

V ar(N |y) = E(N2|y)− E(N |y)2 =
( ∞∑
N=203

N2p(N |y)
)
− E(N |y)2

=
( ∞∑
N=203

N2 · 1
N

(
99
100

)N−1
· c
)
− E(N |y)2 =

( ∞∑
N=203

N

(
99
100

)N−1
· c
)
− E(N |y)2

#Posterior Standard Deviation

infsum3 <- function(N){
x = N*c*((99/100)ˆ(N-1))
return(x)

}

cumN3 <- c()

for (i in N:1000){
cumN3 <- c(cumN3, infsum3(i))

}

post_var <- tail(cumsum(cumN3), n=1) - (post_expˆ2)
post_sd <- sqrt(post_var)

post_sd

## [1] 79.61534
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(c) Choose a reasonable ‘noninformative’ prior distribution forN and give the resulting posterior distribution,
mean, and standard deviation for N .

Solution

Prior Distribution:

p(N) =
{

1
N if N ≥ 0
0 otherwise

Likelihood:

p(y|N) =
{

1
N if N ≥ 203
0 otherwise

Posterior Distribution:
p(N |y) ∝ p(N)p(y|N) = 1

N
· 1
N

= 1
N2

Normalizing Constant:
p(N |y) = c · 1

N2

1
c

=
∞∑

N=203

1
N2

#Normalizing Constant

infsum4 <- function(N){
x = 1/(Nˆ2)
return(x)

}

cumN4 <- c()

for (i in N:100000){
cumN4 <- c(cumN4, infsum4(i))

}

tail(cumsum(cumN4), n=1) #1/c

## [1] 0.004928262
c2 <- 1/(tail(cumsum(cumN4), n=1))

c2

## [1] 202.9113

E(N |y) =
∞∑

N=203
Np(N |y) =

∞∑
N=203

N · 1
N2 · c =

∞∑
N=203

c

N

#Posterior Mean/Expectation

infsum5 <- function(N){
x = c2/N
return(x)

}
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cumN5 <- c()

for (i in N:100){
cumN5 <- c(cumN5, infsum5(i))

}

post_exp2 <- tail(cumsum(cumN5), n=1)

post_exp2

## [1] 145.1841

Problem 8
Discrete data: Table 2.2 gives the number of fatal accidents and deaths on scheduled airline flights per year
over a ten-year period. We use these data as a numerical example for fitting discrete data models.

(a) Assume that the numbers of fatal accidents in each year are independent with a Poisson(θ) distribution.
Set a prior distribution for θ and determine the posterior distribution based on the data from 1976
through 1985. Under this model, give a 95% predictive interval for the number of fatal accidents in
1986. You can use the normal approximation to the gamma and Poisson or compute using simulation.

Solution

Let yi be the number of fatal accidents in year i, for i = 1, 2, ..., n (years in the data, n = 10), and θ be the
expected number of accidents in a year.

Prior Distribution:

Using Gamma(0,0) as a noninformative conjugate prior for the Poisson likelihood,

p(θ) = βα

Γ(α)θ
α−1e−βθ = θ−1

Likelihood: yi|θ ∼ Poisson(θ)

p(y|θ) =
n∏
i=1

θyie−θ

yi!
= θ

∑
yie−nθ∏n
i=1 yi!

∝ θnȳe−nθ

Posterior Distribution:
p(θ|y) ∝ p(θ)p(y|θ) = θ−1 · θnȳe−nθ = θnȳ−1e−nθ

θ|y ∼ Gamma(nȳ, n)

θ|y ∼ Gamma(238, 10)

*Note that:

• α = β = 0
•
∑

yi

n = ȳ, so
∑
yi = nȳ

• n = 10
• ȳ = 23.8

#Computing 95% Predictive Interval for New Y (via Simulation)

post_theta <- rgamma(10000, 238, 10)
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y_pred <- rpois(10000, post_theta)

#hist(y_pred)

lower <- mean(y_pred)-(1.96*sd(y_pred))
upper <- mean(y_pred)+(1.96*sd(y_pred))

c(lower, upper)

## [1] 13.81175 33.81565

(b) Assume that the numbers of fatal accidents in each year follow independent Poisson distributions with
a constant rate and an exposure in each year proportional to the number of passenger miles flown. Set
a prior distribution for θ and determine the posterior distribution based on the data for 1976-1985.
(Estimate the number of passenger miles flown in each year by dividing the appropriate columns of
Table 2.2 and ignoring round-off errors.) Give a 95% predictive interval for the number of fatal accidents
in 1986 under the assumption that 8× 1011 passenger miles are flown that year.

Solution

Let xi be the number of passenger miles flown in year i, for i = 1, 2, ..., n (years in the data, n = 10), and
and θ be the expected accident rate per passenger mile.

Calculating xi:

Year xi

1976 734/0.19× 100 million = 3.863× 1011

1977 516/0.12× 100 million = 4.300× 1011

1978 754/0.15× 100 million = 5.027× 1011

1979 877/0.16× 100 million = 5.481× 1011

1980 814/0.14× 100 million = 5.814× 1011

1981 362/0.06× 100 million = 6.033× 1011

1982 764/0.06× 100 million = 5.877× 1011

1983 809/0.13× 100 million = 6.223× 1011

1984 223/0.03× 100 million = 7.433× 1011

1985 1066/0.15× 100 million = 7.106× 1011

Prior Distribution:

Using Gamma(0,0) as a noninformative conjugate prior for the Poisson likelihood,

p(θ) = βα

Γ(α)θ
α−1e−βθ = θ−1

Likelihood: yi|xi, θ ∼ Poisson(θxi)

p(y|x, θ) =
n∏
i=1

θyixyii e
−θxi

yi!
= θ

∑
yi
∏n
i=1 x

yi
i e
−θ
∑

xi∏n
i=1 yi!

∝ θnȳe−nx̄θ

Posterior Distribution:

p(θ|y, x) ∝ p(θ)p(y|x, θ) = θ−1 · θnȳe−nx̄θ = θnȳ−1e−nx̄θ

θ|y, x ∼ Gamma(nȳ, nx̄)
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θ|y, x ∼ Gamma(238, 5.716× 1012)

*Note that:

• α = β = 0
•
∑

yi

n = ȳ, so
∑
yi = nȳ

•
∑

xi

n = x̄, so
∑
xi = nx̄

• n = 10
• ȳ = 23.8
• x̄ = 5.716× 1011

#Computing 95% Predictive Interval for New Y (via Simulation)

post_theta2 <- rgamma(10000, 238, 5.716e12)
y_pred2 <- rpois(10000, post_theta2*8e11)

#hist(y_pred2)

lower2 <- mean(y_pred2)-(1.96*sd(y_pred2))
upper2 <- mean(y_pred2)+(1.96*sd(y_pred2))

c(lower2, upper2)

## [1] 21.18796 45.42544

(c) Repeat (a) above, replacing ‘fatal accidents’ with ‘passenger deaths.’

Solution

Let yi be the number of passenger deaths in year i, for i = 1, 2, ..., n (years in the data, n = 10), and θ be the
expected number of deaths in a year.

Prior Distribution:

Using Gamma(0,0) as a noninformative conjugate prior for the Poisson likelihood,

p(θ) = βα

Γ(α)θ
α−1e−βθ = θ−1

Likelihood: yi|θ ∼ Poisson(θ)

p(y|θ) =
n∏
i=1

θyie−θ

yi!
= θ

∑
yie−nθ∏n
i=1 yi!

∝ θnȳe−nθ

Posterior Distribution:
p(θ|y) ∝ p(θ)p(y|θ) = θ−1 · θnȳe−nθ = θnȳ−1e−nθ

θ|y ∼ Gamma(nȳ, n)
θ|y ∼ Gamma(6919, 10)

*Note that:

• α = β = 0
•
∑

yi

n = ȳ, so
∑
yi = nȳ

• n = 10
• ȳ = 691.9
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#Computing 95% Predictive Interval for New Y (via Simulation)

post_theta3 <- rgamma(10000, 6919, 10)
y_pred3 <- rpois(10000, post_theta3)

#hist(y_pred3)

lower3 <- mean(y_pred3)-(1.96*sd(y_pred3))
upper3 <- mean(y_pred3)+(1.96*sd(y_pred3))

c(lower3, upper3)

## [1] 638.0961 746.4653

(d) Repeat (b) above, replacing ‘fatal accidents’ with ‘passenger deaths.’

Solution

Let xi be the number of passenger miles flown in year i, for i = 1, 2, ..., n (years in the data, n = 10), and θ
be the expected death rate per passenger mile.

Prior Distribution:

Using Gamma(0,0) as a noninformative conjugate prior for the Poisson likelihood,

p(θ) = βα

Γ(α)θ
α−1e−βθ = θ−1

Likelihood: yi|xi, θ ∼ Poisson(θxi)

p(y|x, θ) =
n∏
i=1

θyixyii e
−θxi

yi!
= θ

∑
yi
∏n
i=1 x

yi
i e
−θ
∑

xi∏n
i=1 yi!

∝ θnȳe−nx̄θ

Posterior Distribution:

p(θ|y, x) ∝ p(θ)p(y|x, θ) = θ−1 · θnȳe−nx̄θ = θnȳ−1e−nx̄θ

θ|y, x ∼ Gamma(nȳ, nx̄)

θ|y, x ∼ Gamma(6919, 5.716× 1012)

*Note that:

• α = β = 0
•
∑

yi

n = ȳ, so
∑
yi = nȳ

•
∑

xi

n = x̄, so
∑
xi = nx̄

• n = 10
• ȳ = 691.9
• x̄ = 5.716× 1011

#Computing 95% Predictive Interval for New Y (via Simulation)

post_theta4 <- rgamma(10000, 6919, 5.716e12)
y_pred4 <- rpois(10000, post_theta4*8e11)

#hist(y_pred4)
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lower4 <- mean(y_pred4)-(1.96*sd(y_pred4))
upper4 <- mean(y_pred4)+(1.96*sd(y_pred4))

c(lower4, upper4)

## [1] 902.5166 1034.7578

(e) In which of the cases (a)-(d) above does the Poisson model seem more or less reasonable? Why? Discuss
based on general principles, without specific reference to the numbers in Table 2.2.

Solution

The most reasonable of the four models above is that from part (d). This is because it generally makes more
sense to model passenger deaths using a Poisson distribution whose unknown parameter is precisely a death
rate, which we may reasonably assume is proportional to the number of passenger miles flown in one unit of
time (that is, we expect to see more deaths in years where more passenger miles were flown). However, as we
may not assume that deaths are independent events in this case, a Poisson model may be more suitable for
modeling fatal accidents, as in part (a), which does not violate this assumption.

Problem 9
Posterior intervals: unlike the central posterior interval, the highest posterior interval is not invariant to
transformation. For example, suppose that, given σ2, the quantity nv/σ2 is distributed as χ2

n, and that σ
has the (improper) noninformative prior density p(σ) ∝ σ−1, σ > 0.

a) Prove that the corresponding prior density for σ2 is p(σ2) ∝ σ−2.

Solution

Let ψ = h(σ) = σ2, and hence, σ =
√
ψ. Then,

p(ψ) = p(σ) ·
∣∣∣∣ dσdψ

∣∣∣∣ = p(σ) ·
∣∣∣∣ ddψ√ψ

∣∣∣∣ = p(σ) ·
(

1
2ψ
− 1

2

)
= p(σ) ·

(
1
2(σ2)− 1

2

)

∝ σ−1 · 1
2σ
−1 = 1

2σ2

Therefore, p(σ2) ∝ σ−2.

b) Show that the 95% highest posterior density region for σ2 is not the same as the region obtained by
squaring the endpoints of a posterior interval for σ.

Solution

Problem 10
Censored and uncensored data in the exponential model:

a) Suppose y|θ is exponentially distributed with rate θ, and the marginal (prior) distribution of θ is
Gamma(α, β). Suppose we observe that y ≥ 100, but do not observe the exact value of y. What is
the posterior distribution, p(θ|y ≥ 100), as a function of α and β? Write down the posterior mean and
variance of θ.

Solution

Prior Distribution: θ ∼ Gamma(α, β)
p(θ) ∝ θα−1e−βθ
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Likelihood: y|θ ∼ Exp(θ)

*Using the sampling distribution for an outcome y, given θ, (assuming n = 0).

p(y|θ) = θe−yθ for y > 0

p(y ≥ 100|θ) = e−100θ

Posterior Distribution:

p(θ|y) ∝ p(θ)p(y|θ) = θα−1e−βθ · e−yθ = θα−1e−θ(β+y)

p(θ|y ≥ 100) ∝ θα−1e−θ(β+100)

θ|y ≥ 100 ∼ Gamma(α, β + 100)

Posterior Mean & Variance of θ:
E(θ|y ≥ 100) = α

β + 100

V ar(θ|y ≥ 100) = α

(β + 100)2

b) In the above problem, suppose that we are now told that y is exactly 100. Now what are the posterior
mean and variance of θ?

Solution

Prior Distribution: θ ∼ Gamma(α, β)
p(θ) ∝ θα−1e−βθ

Likelihood: y|θ ∼ Exp(θ)

*Using the sampling distribution for an outcome y, given θ, (assuming n = 1).

p(y|θ) = θe−yθ for y > 0

p(y = 100|θ) = θe−100θ

Posterior Distribution:
p(θ|y) ∝ p(θ)p(y|θ) = θα−1e−βθ · θe−yθ = θαe−θ(β+y)

p(θ|y = 100) ∝ θαe−θ(β+100)

θ|y = 100 ∼ Gamma(α+ 1, β + 100)

Posterior Mean & Variance of θ:
E(θ|y = 100) = α+ 1

β + 100

V ar(θ|y = 100) = α+ 1
(β + 100)2

c) Explain why the posterior variance of θ is higher in part (b) even though more information has been
observed. Why does this not contradict identity (2.8) on page 32?

Solution

Although more information has been observed in part (b), the posterior variance we obtain in part (a) is not
in fact the prior variance of part (b). The Law of Total Variance implies that the prior variance is greater
than or at least equal to the posterior variance (if there is no variation in posterior means). However, since
V ar(θ|y ≥ 100) is not actually the prior variance of θ when we have posterior V ar(θ|y = 100) (and is also
not averaging over all possible values of y), it is safe to say that these results do not contradict the identity
(2.8) on page 32.
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